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My research interests lie at the interface between Analysis and Geometry, and they are often
motivated by problems involving Curvature. This concept is ubiquitous in Mathematics and Sciences
more in general, a prominent example being Einstein’s equations of General Relativity. Within this
area, a large part of my work has been dedicated to the theory of non-smooth spaces with curvature
bounds and its applications to classical problems in Geometric Analysis. A key for these applications
is the observation that regularity is a highly unstable condition, a priori, and its loss can be traded
for a gain of compactness. This is very much in analogy with the role of Sobolev spaces in Partial
Differential Equations.

Regularity theory of non-smooth spaces with lower curvature bounds
The theory of metric spaces with upper and lower sectional curvature bounds was pioneered by
Alexandrov in the Fifties, based on the previous work of Busemann and Wald. Here the word synthetic
has to be intended in opposition to analytic and metric spaces are described in terms of the excess of
triangles (i.e. the amount by which the sum of the angles exceeds π) with respect to the Euclidean
(or spherical, or hyperbolic) behavior. The metric formulation is robust enough to pass to the singular
limits that arise considering sequences of Riemannian manifolds with sectional curvature bounds. For
lower curvature bounds the theory was further developed by Burago-Gromov-Perelman [13].

Developing an analogous theory in the case of lower Ricci curvature bounds turned out to be a
more challenging goal, see the discussions in [18, Section 5] and [14, Appendix B]. The synthetic theory
of lower Ricci bounds began with the seminal works by Sturm [31] and independently Lott-Villani
[25]. The class of CD(K, N) metric measure spaces (“CD” standing for Curvature-Dimension) was
introduced to provide a synthetic notion of Ricci curvature bounded from below by K ∈ R and
dimension bounded from above by 1 ≤ N ≤ ∞. The treatment is based on Optimal Transport and
it involves metric measure spaces, i.e. triples (X, d,m) where (X, d) is a metric space and m is a
non-negative measure.
To single out spaces with a Riemannian-like behaviour from this broader class that includes finite
dimensional normed vector spaces that are not Hilbert, Ambrosio-Gigli-Savaré introduced the notion
of RCD space in [3] (“R” standing for Riemannian), adding the linearity of the heat flow to the CD
condition. The class of RCD(K, N) spaces includes smooth Riemannian manifolds with Ricci curvature
bounded from below and Alexandrov spaces with lower sectional curvature bounds. Moreover, it is
compact with respect to (pointed) measured Gromov-Hausdorff convergence. Therefore it includes
Ricci limit spaces, i.e., limits of smooth manifolds with uniform lower Ricci bounds.

Since the earliest developments of the RCD theory, one of the driving questions has been to
understand the regularity of these spaces, in analogy with the more classical regularity theory in
Geometric Measure Theory and for weak solutions of Partial Differential Equations.
In joint work with Bruè [12], we proved that when N < ∞ any RCD(K, N) metric measure space
admits a unique well-defined rectifiable dimension 1 ≤ n ≤ N such that all of its tangent spaces
are isometric to Rn away from a negligible set of points. The problem had been mentioned among
the main open questions in the area in survey papers by Villani [32] and Ambrosio [1]. The result
generalizes an earlier one due to Colding-Naber in the case of Ricci limit spaces [15]. However, the
proof relies on a completely novel approach to the regularity of flows of Sobolev vector fields.
Another classical challenge in the theory of non-smooth spaces with lower curvature bounds is the
definition and regularity of the boundary. In collaboration with Bruè and Naber [7] we proved several
regularity and stability results for boundaries of RCD(K, N) spaces such that the rectifiable dimension
n coincides with the synthetic upper bound on the dimension N . In subsequent work with Bruè
and Mondino [6] the techniques from [7] are combined with a new functional inequality to relate a
geometric notion of boundary to an analytic one based on the average distortion of volumes of small
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balls with respect to the Euclidean one. With earlier results from [22], the main theorem of [6] leads
to the positive resolution of an open question about the existence of infinite geodesics on Alexandrov
spaces with empty boundary raised by Perelman and Petrunin in 1996.

Geometric measure theory in low regularity and applications
The interplay between curvature and minimal surfaces, or more general solutions of geometric varia-
tional problems involving the area functional, has been one of the cornerstones of Geometric Analysis
in the last fifty years. Among the most classic examples of this deep connection are the Lévy-Gromov
isoperimetric inequality for manifolds with positive Ricci curvature [19, Appendix C] and the proof by
Schoen-Yau of the positive mass theorem for asymptotically flat manifolds with nonnegative scalar
curvature [29]. These developments were intertwined with the birth and growth of Geometric Measure
Theory in Euclidean and Riemannian setting. This celebrated connection between curvature and
minimal surfaces and the relevance of the theory of singular spaces with curvature bounds motivate
the attempts to develop Geometric Measure Theory in non-smooth ambient spaces with curvature
bounds.
In two joint projects with Ambrosio-Bruè [2] and Bruè-Pasqualetto [11] we developed a theory of sets
of finite perimeter in RCD metric measure spaces. Sets of finite perimeter are a versatile tool for
studying geometric variational problems in codimension one (their boundaries should be considered
as generalized hypersurfaces) and in the Euclidean case their theory was pioneered by Caccioppoli
and De Giorgi in the Fifties. The state of the art of the theory in the RCD setting after [2, 11] is
analogous to the Euclidean situation, to most extents. However, the extension of the classical results
to this low-regularity setting required several new insights.
In more recent joint work with Mondino [27] we initiated a regularity theory for solutions of minimiza-
tion problems for sets of finite perimeter over RCD spaces. The main goal is to show that the (local)
minimality and the lower bound on the Ricci curvature affect the first and second variation of the
area as in the case of smooth ambient spaces. Most of the usual arguments break in this setting due
to the presence of singularities in the ambient space, which might be dense, and to the absence of any
known regularization method. The main results of [27] answer some questions that had been raised
by Gromov [20, Section 6.9]. The tools developed in [27] have been employed and generalized in [5]
to answer several open questions about the isoperimetric problem on smooth complete Riemannian
manifolds with Ricci curvature bounded from below.

Fundamental groups of open manifolds with nonnegative Ricci curvature
One of the main broad themes of Geometric Analysis is to understand the global implications of a
given curvature condition on the topology (or even differentiable structure) of a smooth Riemannian
manifold. In the case of Ricci curvature, a result of Lohkamp [24] shows that the existence of a
metric with negative Ricci curvature does not restrict at all the topology in dimensions larger than
3. On the other hand, a great deal of work in the past fifty years was stimulated by a conjecture
of Milnor [26] that predicted that a complete smooth Riemannian manifold with nonnegative Ricci
curvature should have finitely generated fundamental group. In collaboration with Bruè and Naber we
constructed a family of counterexamples to the Milnor conjecture. The conjecture was known to be
true in dimensions less or equal to 3 [23] and the counterexamples were constructed first in dimension
7 in [8]. More recently in [10] we managed to lower the dimension of the counterexamples to 6 with a
non-trivial extension of the techniques developed in our earlier paper.
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