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Introduction

RCD spaces are (possibly) non smooth metric measure spaces with Ricci
curvature bounded from below and dimension bounded from above, in
synthetic sense.

Structure theory
Addressing the regularity for these spaces and estimating the size of
singularities.

In [Brué-Pasqualetto-S. ’20] we give simplified proofs of the known results
about the structure of RCD(K ,N) spaces relying on δ-splitting maps.
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Ricci curvature: Lagrangian vs Eulerian

Consider a smooth map ψ : M → R and let

Tt (x) := exp(t∇ψ(x)).

Then if γ̇ := d
dt Tt (x) and J (t) = det DTt (x) is the volume element,

d2

dt2 (J (t))1/n +
Ric(γ̇, γ̇)

n
J 1/n ≤ 0 (1)

and

∆
|∇ψ|2

2
−∇ψ · ∇∆ψ ≥ (∆ψ)2

n
+ Ric(∇ψ,∇ψ). (2)

Remark
(1) is a Lagrangian perspective and (2) (the Bochner inequality) is a dual
Eulerian perspective on Ricci curvature.
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Ricci curvature bounds

Remark
Any manifold can be endowed with a Riemannian metric with Ricci curvature
bounded above.

Lower bounds on Ricci curvature, coupled with upper bounds on the dimension
are at the heart of Geometric Analysis and of several related fields.

Bishop-Gromov inequality on monotonicity of volume ratios;
Cheeger-Gromoll splitting theorem;
Li-Yau heat kernel bounds;
spectral gap and diameter estimates;
Lévy-Gromov isoperimetric inequality.

Theorem ([Gromov] )
The classMN,D,K of smooth Riemannian manifolds with dimension N,
diameter bounded above by D and Ricci curvature bounded below by K is
precompact w.r.t. the Gromov-Hausdorff topology.
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The quest for synthetic notions, I

Question
How do Riemannian manifolds inMN,D,K look like?

The question motivated the theory of Ricci limits, limits in the (pm)GH topology
of manifolds inMN,D,K , initiated by Cheeger-Colding in the Nineties.

Riemannian manifolds with bounded Ricci curvature and volume
bounded from below verify uniform L2-bounds for the Riemann curvature
tensor ([Jiang-Naber ’16]);
Riemannian manifolds with lower Ricci curvature bounds do not verify
uniform C1-estimates for harmonic functions ([Cheeger-Naber ’15], [De
Philippis-Zimbron ’19]).

The study of Ricci limits improves our knowledge ofMN,D,K .
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The quest for synthetic notions, II
The synthetic treatment of lower Ricci curvature bounds stems from the
following

Question
Do Ricci limit spaces have Ricci curvature bounded from below? In which
sense?

Synthetic means not depending on the existence of a smooth structure, nor
making reference to any notion of smoothness.

Remark
Analogy with the theory of Alexandrov spaces, based on Toponogov’s triangle
comparison.

[Gromov ’81]: such a theory should deal with metric measure spaces.
The heat flow could play a role;
[Cheeger-Colding ’97]: necessity to localize the Bishop-Gromov volume
monotonicity in single directions.
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Calculus tools
On a m.m.s. (X , d,m) we introduce the Cheeger energy Ch : L2(X ,m) →
[0,+∞] by

Ch(f ) := inf

{
lim inf
n→∞

∫
X

(lipfn)2dm : fn → f in L2(X ,m), fn ∈ Lip(X , d)

}
.

There exists a minimal relaxed gradient |∇f | such that Ch(f ) =
∫

X |∇f |2dm
for any f ∈ {Ch < +∞};
it is possible to define a heat flow Pt and a laplacian ∆ as the gradient
flow of 1

2 Ch over L2(X ,m) and its infinitesimal generator, respectively.

Definition
A m.m.s. (X , d,m) is infinitesimally Hilbertian if Ch is a quadratic form on
L2(X ,m).

Remark
On any infinitesimally Hilbertian m.m.s. Pt and ∆ are linear.
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RCD(K ,N) spaces

After several contributions:

[McCann ’97], [Otto-Villani ’00],
[Cordero-Erausquin-McCann-Schmuckenschläger ’01], [Sturm-Von
Renesse ’07], for the connections between Optimal Transport and Ricci
curvature on Riemannian manifolds;
[Sturm ’06] and [Lott-Villani ’07], for the proposal of the CD(K ,N)
Curvature-Dimension condition on metric measure spaces;
[Ohta-Sturm ’09], [Ambrosio-Gigli-Savaré ’12], [Gigli ’13] for the additional
Riemannian assumption:

Definition (RCD(K ,N) m.m.s.)
For any K ∈ R and 1 ≤ N <∞ we say that (X , d,m) is RCD(K ,N) if it is an
infinitesimally Hilbertian CD(K ,N) m.m.s..
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The Eulerian approach

After [Bacher-Sturm ’10], [Erbar-Kuwada-Sturm ’15] and [Ambrosio-Mondino-
Savaré ’15], inspired by the theory of Bakry-Émery-Ledoux, we have:

Theorem (RCD∗(K ,N) spaces)
A m.m.s. (X , d,m) is RCD∗(K ,N) if:

m(Br (x)) ≤ c1 exp(c2r2) for some x ∈ X and constants c1, c2 > 0;
it is infinitesimally Hilbertian;
it satisfies the Sobolev to Lipschitz property;

∆ 1
2 |∇f |2−∇f · ∇∆f ≥ (∆f )2

N + K |∇f |2, for any f in a class of test functions.

Remark
RCD∗(K ,N) is equivalent to RCD(K ,N) if m(X ) <∞, thanks to
[Cavalletti-Milman ’16].
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Remarks & motivations

The splitting theorem ([Cheeger-Gromoll], [Cheeger-Colding]) holds for
RCD(0,N) spaces [Gigli ’13]. The split factor is RCD(0,N − 1);
a cone is RCD(0,N) if and only if the cross section is RCD(N − 2,N − 1)
[Ketterer ’13];
quotients of RCD∗(K ,N) spaces under suitable group actions are
RCD∗(K ,N) spaces, [Galaz-Garcia-Kell-Mondino-Sosa ’17];
pmGH limits of manifolds inMN,D,K are RCD(K ,N) spaces;
Alexandrov spaces with dimension n and curvature bounded below by k
equipped with the Hausdorff measure Hn are RCD(k(n − 1),n) spaces
[Petrunin ’11], [Zhang-Zhu ’10];
the cone over RP2 is not limit of smooth Riemannian manifolds with
nonnegative Ricci curvature and dimension less than 3 [Simon ’12],
[Simon-Topping ’17].
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nonnegative Ricci curvature and dimension less than 3 [Simon ’12],
[Simon-Topping ’17].
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Tangent spaces

Question
How regular is an RCD(K ,N) space?

Definition (Tangent cone)
Given an RCD(K ,N) m.m.s. (X , d,m) and x ∈ X we let Tanx (X , d,m) be the
set of all pmGH limits

(Y , dY ,mY , y) = lim
i→∞

(X , r−1
i d,mx

ri
, x),

where ri ↓ 0 and mx
ri

= cx
ri
m for some normalizing constant cx

ri
> 0.

If (X , d,m) = (Mn, dg , volg), then Tanx (X , d,m) = {(Rn, deucl , cnL n,0n)}
for any x ∈ X ;
the tangent cone to a metric cone at its tip is the cone itself.
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Structure theory: the state of the art

Definition (k -regular set)
Let (X , d,m) be an RCD(K ,N) m.m.s.. For any 1 ≤ k ≤ N let

Rk :=
{

x ∈ X : Tanx (X , d,m) =
{(

Rk , deucl , ckL k ,0k)}} .
After [Mondino-Naber ’14] and [Kell-Mondino ’16], [De Philippis-Marchese-
Rindler ’16], [Gigli-Pasqualetto ’16] we have

Theorem
It holds

m

X \
bNc⋃
k=1

Rk

 = 0.

Furthermore, for any 1 ≤ k ≤ N the k-regular set Rk is (m, k)-rectifiable and
m Rk = θHk , for some density θ ∈ L1

loc(Hk Rk ).

(m, k)-rectifiable means that, up to an m-negligible set, we can cover it with a
countable union of biLipschitz images of subsets of Rk .
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Comments

Remark
In [Brué-S. 18] we proved that RCD(K ,N) spaces have constant dimension in
the almost everywhere sense.This was proved for Ricci limit spaces in
[Colding-Naber ’12].

Different approach needed with respect to the structure theory for Ricci limits:
no notion of Hessian on RCD spaces at the time of [Mondino-Naber ’14];
failure of a key lemma of [Cheeger-Colding ’97] on smooth weighted CD
manifolds.

Key tools:
New almost splitting via excess theorem in [Mondino-Naber ’14] for the
rectifiable structure.
Use of the deep results by [De Philippis-Rindler ’16] on the structure of
solutions to linear PDEs for the absolute continuity of the reference measure.
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Hessian on RCD spaces

In [Gigli ’14] a second order differential calculus on RCD(K ,∞) spaces has
been developed.See also [Savaré ’14] and [Sturm ’15].

Remark
The Hessian verifies many of the usual calculus rules.

Functions in the domain of the Laplacian have Hessian.
Moreover integrating Bochner’s inequality against good cut-offs we get

∫
B1(x)

|Hessf |2dm ≤CK ,N

(∫
B2(x)

(∆f )2dm + inf
m∈R

∫
B2(x)

||∇f |2 −m|dm

)

− K
∫

B2(x)

|∇f |2.
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Harmonic δ-splitting maps

Definition (δ-splitting map)
Let (X ,d,m) be an RCD(K ,N) m.m.s. and Br (x) ⊂ X . We say that
u : Br (x)→ Rk is a δ-splitting map provided:

a) u has harmonic and CN -Lipschitz components;

b) r2

m(Br (x))

∫
Br (x)
|Hessu|2dm ≤ δ;

c) 1
m(Br (x))

∫
Br (x)
|∇ua · ∇ub − δab|dm ≤ δ.

They have played a fundamental role in the theory of Ricci limits, as in
[Cheeger-Colding ’97], [Cheeger-Naber ’15], [Cheeger-Jiang-Naber ’18].

δ-splitting maps and structure theory
In [Brué-Pasqualetto-S. 20] we give new proofs of the structure theorems for
RCD(K ,N) spaces using δ-splitting maps to rectify, as in the Cheeger-Colding
theory.

This tool allows to extend the theory to positive codimension.
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The intuition

Suppose X = Rk ×Y and let u := (x1, . . . , xk ) be the canonical coordinates on
the factor Rk .
They are harmonic, with vanishing Hessians and (pointwise) orthogonal
gradients.

Remark
Harmonic δ-splitting maps are harmonic approximations in the W 1,2-sense of
the canonical Euclidean coordinates.

They are obtained relying on the compactness and stability results of
[Gigli-Mondino-Savaré ’15], [Ambrosio-Honda ’17], [Ambrosio-Honda ’18].

Remark
If r2|K | ≤ δ then condition b) in the definition of δ-splitting map is redundant.
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δ-splitting implies ε-isometry

If at a certain location a map is δ-splitting at all sufficiently small scales, then
any tangent is close to a split space.

Theorem
Let N > 1 be given. Then for any ε > 0 there exists δ = δN,ε > 0 such that the
following holds.
If (X ,d,m) is an RCD(K ,N) space, x ∈ X, and there exists a map
u : Br (x)→ Rk such that u : Bs(x)→ Rk is a δ-splitting map for all s < r , then
for any (Y , %, n, y) ∈ Tanx (X ,d,m)

dpmGH

(
(Y , %, n, y),

(
Rk × Z ,dEucl × dZ ,Lk ⊗mZ , (0k , z)

))
≤ ε,

for some pointed RCD(0,N − k) space (Z ,dZ ,mZ , z).
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ε-close yields δ-splitting

If a space is ε-close to a split space with Euclidean factor Rk , then there is a
(k , δ)-splitting map.

Theorem
Let N > 1 be given. Then for any δ > 0 there exists ε = εN,δ > 0 such that the
following holds.
If (X ,d,m) is an RCD(K ,N) space, x ∈ X, r > 0 with r2|K | ≤ ε, and there is
an RCD(0,N − k) space (Z ,dZ ,mZ , z) such that

dpmGH

((
X ,d/r ,mr

x , x
)
,
(
Rk × Z ,dEucl × dZ ,Lk ⊗mZ , (0k , z)

))
≤ ε,

then there exists a δ-splitting map u : B5r (x)→ Rk .
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Existence of regular tangents

The starting point is the following

Theorem ([Gigli-Mondino-Rajala ’13] )
Let (X , d,m) be an RCD(K ,N) m.m.s.. Then for m-a.e. x ∈ X there exists
1 ≤ k ≤ N such that (

Rk , deucl , ckL k ,0k) ∈ Tanx (X , d,m).

Remark
Proved by iterative application of the splitting theorem, relying on the principle
that tangents of tangents are tangents [Preiss ’87], [Le Donne ’11].

We also obtain an independent proof of the existence of regular tangents via
a different strategy.
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Propagation of regularity
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Why using harmonic δ-splitting maps

Remark
In the study of singular sets on non collapsed Ricci limits, harmonic δ-splitting
maps verify much better estimates than general δ-splitting maps, see
[Cheeger-Jiang-Naber ’18].

Also on general RCD(K ,N) spaces harmonic δ-splitting maps turn to be
useful.

Remark
In [Brué-Pasqualetto-S. ’19] they are used to prove rectifiability of reduced
boundaries for sets of finite perimeter.
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Possible directions

Infinite dimensional case
Non linear case

Daniele Semola Structure theory of RCD(K , N) spaces mms & convergence, 18.09.2020 24 / 25



Thank you for your attention!
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