Ricci Curvature, Fundamental Groups, and the Milnor Conjecture

Daniele Semola
FIM-ETH Zürich
daniele.semola@math.ethz.ch

30-11-2023 Oberseminar Differentialgeometrie, MPIM Bonn

The Milnor Conjecture

In 1968, John Milnor raised the following:

Conjecture

Let $\left(M^{n}, g\right)$ be a smooth, complete Riemannian manifold with Ric ≥ 0. Then $\pi_{1}(M)$ is finitely generated.

In joint work with Elia Bruè and Aaron Naber we constructed families of counterexamples to Milnor's conjecture:

Theorem (Bruè-Naber-S., March '23)

For any group $\Gamma<\mathbb{Q} / \mathbb{Z}$ there exists a smooth, complete Riemannian manifold $\left(M^{7}, g\right)$ with Ric ≥ 0 and $\pi_{1}(M) \cong \Gamma$.

Theorem (Bruè-Naber-S., November '23)

For any group $\Gamma<\mathbb{Q} / \mathbb{Z}$ there exists a smooth, complete Riemannian manifold $\left(M^{6}, g\right)$ with Ric ≥ 0 and $\pi_{1}(M) \cong \Gamma$.

State of the art and open questions

- The conjecture is true in dimension 2 ([Cohn-Vossen '35]).
- It is true in dimension 3 ([Liu '13], see also [Schoen-Yau '82] for the case Ric >0 and [Pan '18] for a different argument).
- The counterexamples extend to any dimension ≥ 8.

Open question

Does the Milnor conjecture hold in dimensions 4 and 5 ?

The Ricci flat case

Open question

Does the Milnor conjecture hold for Ricci flat manifolds?

Remark

The question is open even in dimension 4.

Remark

No single example of a Ricci flat, non-flat 4-manifold with infinite fundamental group is currently known.

Theorem (Anderson-Kronheimer-LeBrun '89)

There exist complete Ricci flat $\left(M^{4}, g\right)$ with infinitely generated H_{2}.

Outline

(1) Introduction
(2) Background on Ricci and π_{1}
(3) The topological construction

4 Geometric steps
(5) Conclusions

Positive Ricci and fundamental group

Theorem (Bonnet-Myers '41)

If $\left(M^{n}, g\right)$ has Ric $\geq n-1$, then $\operatorname{diam}(M) \leq \pi$.
By applying the Bonnet-Myers estimate to the universal cover (\tilde{M}, \tilde{g}) we immediately get:

Corollary
If $\left(M^{n}, g\right)$ has Ric $\geq n-1$, then $\pi_{1}(M)$ is finite.

Bishop-Gromov and polynomial growth

Recall that on $\left(M^{n}, g\right)$ with Ric ≥ 0, the function

$$
r \mapsto \frac{\operatorname{vol}\left(B_{r}(p)\right)}{\omega_{n} r^{n}}
$$

is non-increasing, by Bishop-Gromov's theorem.

Theorem (Milnor '68)

Let $\left(M^{n}, g\right)$ be complete with Ric ≥ 0. Then any finitely generated subgroup of $\pi_{1}(M)$ has polynomial growth of order $\leq n$.

Remark

This rules out the free group \mathbb{F}_{2}, and \mathbb{Z}^{n+1} as possible fundamental groups of (M^{n}, g) with Ric ≥ 0.

Structure of fin. gen. subgroups of $\pi_{1}(M)$

By [Gromov '81] fin. gen. subgroups of $\pi_{1}(M)$ are virtually nilpotent. After [Fukaya-Yamaguchi '92], [Kapovitch-Petrunin-Tuschmann '10]:

Theorem (Kapovitch-Wilking '11)

There exists $C(n)>0$ s.t. for any $\left(M^{n}, g\right)$ with Ric $\geq 0, \pi_{1}(M)$ has a nilpotent subgroup N of index $\leq C(n)$ such that any finitely generated subgroup of N

- is generated by $C(n)$ elements;
- has nilpotency length $\leq n$.

Corollary

$(\mathbb{Z} / k \mathbb{Z})^{N}$ is not an admissible π_{1} of $\left(M^{n}, g\right)$ with Ric ≥ 0 for $N \gg n$.

Existence results

Building on the earlier [Wei '88]:

Theorem (Wilking '00)

For any finitely generated, virtually nilpotent group 「 there exists a smooth, complete (M, g) with Ric ≥ 0 such that $\pi_{1}(M) \cong \Gamma$.

Open question

Is the Heisenberg group with rational coefficients $\left(H_{3}(\mathbb{Q}), \cdot\right)$,

$$
H_{3}(\mathbb{Q}):=\left\{\left(\begin{array}{lll}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right): a, b, c \in \mathbb{Q}\right\} .
$$

the fundamental group of some complete (M, g) with Ric ≥ 0 ?

Wilking's reduction

It is possible to reduce Milnor's conjecture to the case of abelian fundamental groups:

Theorem (Wilking '00)

Let $\left(M^{n}, g\right)$ be such that Ric ≥ 0. Then $\pi_{1}(M)$ is finitely generated if and only if any abelian subgroup of $\pi_{1}(M)$ is finitely generated.

Remark

Any $\Gamma<\mathbb{Q} / \mathbb{Z}$ is abelian and it has cyclic finitely generated subgroups.

Remark

Groups $\Gamma<\mathbb{Q} / \mathbb{Z}$ or $\Gamma<\mathbb{Q}$ are indeed the simplest choices for the fundamental group of a potential counterexample.

A few positive results

Theorem (Gromov '78)

Let $\left(M^{n}, g\right)$ be complete with $\operatorname{Sec} \geq 0$. Then $\pi_{1}(M)$ is generated by at most 3^{n} elements.

By Bishop-Gromov, (M^{n}, g) with Ric ≥ 0 has at most Euclidean volume growth.

Theorem (Li '86, Anderson '90)

If $\left(M^{n}, g\right)$ with Ric ≥ 0 has Euclidean volume growth, $\pi_{1}(M)$ is finite.

Calabi and Yau proved that if $\left(M^{n}, g\right)$ with Ric ≥ 0 is non-compact, then its volume growth is at least linear.

Theorem (Sormani '00)

If $\left(M^{n}, g\right)$ with Ric ≥ 0 has linear volume growth, then $\pi_{1}(M)$ is finitely generated.

Manifolds with infinitely gen. fund. groups

A classical example (compatible with the known restrictions):

Theorem (Steenrod '43)

There exists M^{3} with $\pi_{1}(M)$ isomorphic to the dyadic rationals.
Steenrod credits Vietoris for the idea; cf. with Whitehead manifold.

Remark

The dyadic solenoid complement was a potential Milnor counterexample before [Liu '13], cf. with [Shen-Sormani '06].

Theorem (Folklore?)

Any countable group is the fundamental group of a 5-manifold.

Setting up the construction

We construct the universal $\operatorname{cover}(\tilde{M}, \tilde{g}, \tilde{p})$ together with a prop. discont. action of Γ by isometries.
The construction is inductive:

- Fix a sequence $r_{i} \rightarrow \infty$ with $r_{i+1} / r_{i} \rightarrow \infty$.
- Write $\Gamma=\cup_{i} \Gamma_{i}$, with $\Gamma_{i}<\Gamma_{i+1}$ and all the Γ_{i} finite.
- In particular, $\Gamma_{i}=<\gamma_{i}>$ and $\exists k_{i} \in \mathbb{Z}$ such that $\gamma_{i}^{k_{i}}=\gamma_{i-1}$.

Example

Take $\gamma_{i}=2^{-i}$ with $k_{i}=2$ for every $i \in \mathbb{N}$ to get the dyadic rationals.

Remark

The Γ_{i} 's are local fundamental groups of M :

$$
\Gamma_{i}=<\gamma \in \Gamma: d(\gamma(\tilde{p}), \tilde{p}) \leq r_{i}><\Gamma .
$$

The global picture: a tree

- Consider

$$
\Gamma \times[0, \infty) / \sim,
$$

where $(\gamma, t) \sim\left(\gamma^{\prime}, t^{\prime}\right)$ if $\gamma^{-1} \gamma^{\prime} \in \Gamma_{i}$ and $t=t^{\prime} \geq r_{i}$ for some $i \in \mathbb{N}$.

- The action of Γ on $\Gamma \times[0, \infty)$ by multiplication on the first factor induces an action of Γ on $\Gamma \times[0, \infty) / \sim$.

From the tree to a manifold

For a global picture:

- To obtain \tilde{M}, we replace each vertex of the tree with a copy of $S^{3} \times D^{4}$.
- Each edge corresponds to a gluing along boundaries.
- A copy of $S^{3} \times D^{4}$ is glued into another copy of $S^{3} \times D^{4}$ by removing a smaller $S^{3} \times D^{4}$ and gluing the $S^{3} \times S^{3}$ boundaries with a diffeomorphism $\varphi: S^{3} \times S^{3} \rightarrow S^{3} \times S^{3}$.

In the inductive steps we go from $\left(M_{j}, g_{j}, \tilde{p}, \Gamma_{j}\right)$ to $\left(M_{j+1}, g_{j+1}, \tilde{p}, \Gamma_{j+1}\right)$. Roughly speaking,

$$
(\tilde{M}, \tilde{g}, \tilde{p}, \Gamma)=\lim _{j \rightarrow \infty}\left(M_{j}, g_{j}, \tilde{p}, \Gamma_{j}\right)
$$

The inductive step

For the inductive construction: the ends of k_{j} copies of M_{j-1} are glued into a copy of $S^{3} \times D^{4}$ after removing k_{j} small copies of $S^{3} \times D^{4}$.

Preliminaries on the action

Remark

There is a free S^{1}-action on S^{3}, inducing the Hopf fibration:

$$
\theta \cdot\left(z_{1}, z_{2}\right)=\left(e^{i \theta} z_{1}, e^{i \theta} z_{2}\right), \quad \theta \in S^{1}, \quad\left(z_{1}, z_{2}\right) \in S^{3} \subset \mathbb{C}^{2} .
$$

Definition

For $(a, b) \in \mathbb{Z} \times \mathbb{Z}$ we denote by (a, b)-Hopf action the induced S^{1}-action on $S^{3} \times S^{3}$ defined by

$$
\theta_{(a, b)} \cdot\left(s_{1}, s_{2}\right)=\left(a \theta \cdot s_{1}, b \theta \cdot s_{2}\right), \quad \theta \in S^{1}, \quad s_{1}, s_{2} \in S^{3} .
$$

Remark

When a, b are coprime the (a, b)-Hopf action is free.

Describing the action

The action of γ_{j} on the new copies of $S^{3} \times D^{4}$ is:

- by Hopf rotation with angle $2 \pi /\left(k_{1} \cdots k_{j}\right)=2 \pi / \operatorname{ord}\left(\gamma_{j}\right)$ on S^{3};
- by Hopf rotation with angle $2 \pi / k_{j}$ on the D^{4}-factor.

In particular, it is a sub-action of the $\left(1, k_{1} \cdots k_{j-1}\right)$-Hopf action.
Therefore:

- The action of $\gamma_{j}^{k_{j}}\left(=\gamma_{j-1}\right)$ is by pure rotation on the S^{3} factor. However
- it is induced by the $\left(1, k_{1} \cdots k_{j-2}\right)$-Hopf action on the ends of M_{j-1} that we glue in, by the inductive hypothesis.

Consequence

We need gluing diffeomorphisms φ_{j} conjugating the two actions:

$$
\varphi_{j}\left(\theta_{\left(1, k_{1} \ldots k_{j-2}\right)} \cdot\left(s_{1}, s_{2}\right)\right)=\theta_{(1,0)} \cdot \varphi_{j}\left(s_{1}, s_{2}\right), \quad s_{1}, s_{2} \in S^{3}
$$

Recap and main challenge

The end of M_{j-1} is diffeomorphic to an annulus in $S^{3} \times \mathbb{R}^{4}=$ $S^{3} \times C\left(S^{3}\right)$, with Γ_{j-1} acting by mixed rotation on both S^{3} factors.

Each of the "lower ends" of the new copy of $S^{3} \times D^{4} \backslash\left(\bigcup S^{3} \times D^{4}\right)$ is diffeomorphic to an annulus in $S^{3} \times \mathbb{R}^{4}=S^{3} \times C\left(S^{3}\right)$. However, Γ_{j-1} should act by pure rotation on the S^{3} factor there.

Main Challenge: we need to twist the ends of M_{j-1} to turn a mixed rotation into a pure rotation on the S^{3} factor in a "Ric ≥ 0 compatible" way.

The gluing neck, I

The gluing neck, II

Action twisting and positive Ricci curvature

Theorem

Let g_{0} be the standard metric on $S^{3} \times S^{3}$ and let $k \in \mathbb{Z}$ be fixed. There exist
a) a diffeomorphism $\varphi: S^{3} \times S^{3} \rightarrow S^{3} \times S^{3}$;
b) a smooth family of Riemannian metrics $\left(g_{t}\right)_{t \in[0,1]}$ on $S^{3} \times S^{3}$; such that:
i) $\operatorname{Ric}_{t}>0$ for any $t \in[0,1]$;
ii) the S^{1}-action $\cdot(1, k)$ is isometric on $\left(S^{3} \times S^{3}, g_{t}\right)$ for any $t \in[0,1]$;
iii) $g_{1}=\varphi^{*} g_{0}$ and $\varphi\left(\theta_{(1, k)}\left(s_{1}, s_{2}\right)\right)=\theta_{(1,0) \varphi}\left(s_{1}, s_{2}\right)$.

Remark

It is instructive to do an analogous construction for a family of flat metrics on $S^{1} \times S^{1}$.

Comments on the gluing diffeomorphisms

For $k=1$, we can take (up to isotopy)

$$
\varphi_{1}\left(s_{1}, s_{2}\right)=\left(s_{1}, s_{1}^{-1} s_{2}\right), \quad s_{1}, s_{2} \in S^{3} .
$$

For general $k \in \mathbb{Z}$, (up to isotopy) φ has the special structure

$$
\varphi_{k}\left(s_{1}, s_{2}\right)=\left(s_{1}, \psi_{s_{1}}\left(s_{2}\right)\right), \quad \psi_{s_{1}} \in \operatorname{SO}(4) .
$$

Remark

These gluing diffeomorphisms are not isotopic to the identity.

Remark

Any such φ extends (radially) to a diffeo $\bar{\varphi}: S^{3} \times D^{4} \rightarrow S^{3} \times D^{4}$.

Theorem

The universal covers of the counterexamples are diffeo. to $S^{3} \times \mathbb{R}^{4}$.

Positive Ricci curvature and $\pi_{0}\left(\operatorname{Diff}\left(S^{3} \times S^{3}\right)\right)$

Theorem

Let g_{0} be the standard metric on $S^{3} \times S^{3}$ and $\varphi \in \operatorname{Diff}\left(S^{3} \times S^{3}\right)$. There exists a smooth family of Riemannian metrics g_{t} on $S^{3} \times S^{3}$ such that:

- $\operatorname{Ric}_{t}>0$ for any $t \in[0,1]$;
- $g_{1}=\varphi^{*} g_{0}$.

Remark

If φ is isotopic to id, the construction is elementary: $g_{t}:=\varphi_{t}^{*} g_{0}$.

Proof.

The diffeomorphisms in the previous slide generate $\pi_{0}\left(\operatorname{Diff}\left(S^{3} \times S^{3}\right)\right.$), [Kreck '78], [Krylov '03].

The 6-dimensional case

The construction of the 6-dimensional counterexamples is analogous, up to replacing $S^{3} \times D^{4}$ with $S^{3} \times D^{3}$ (and hence $S^{3} \times S^{3}$ with $S^{3} \times S^{2}$).

Remark

Constructing the equivariant interpolation of metrics with Ric >0 on $S^{3} \times S^{2}$ is considerably more delicate than in the $S^{3} \times S^{3}$ case.

Remark

The main reason is that $2 \neq 3$.

The S^{1}-bundles $\pi_{(1, k)}^{\prime}: S^{3} \times S^{2} \rightarrow S^{1} \backslash\left(S^{3} \times S^{2}\right)$ have:

- fibers with non-constant length;
- non-harmonic curvature 2-form, contrary to the case of $\pi_{(1, k)}: S^{3} \times S^{3} \rightarrow S^{1} \backslash\left(S^{3} \times S^{3}\right)$.

Final remarks

- The asymptotic geometry at infinity of the counterexamples is particularly rich.
We obtain the first example of (M, g) with Ric ≥ 0 with a blow-down which is not simply connected.
- The volume growth of the universal covers is not Euclidean. The conjecture is still open in the case of universal covers with Euclidean volume growth.
- The conjecture is open for Kähler manifolds with Ric ≥ 0, even in the case of complex surfaces.
- The construction of counterexamples in dimension ≤ 5, if they exist, will most likely require a new method.

Thank you for your attention!

